3,858 research outputs found

    The ins and outs of thallium kinetics

    Get PDF

    Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    Get PDF
    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes

    Transmission phase of a quantum dot: Testing the role of population switching

    Full text link
    We propose a controlled experiment to clarify the physical mechanism causing phase lapses of the amplitude for electron transmission through nanoscale devices. Such lapses are generically observed in valleys between adjacent Coulomb--blockade peaks. The experiment involves two quantum dots embedded in the same arm of an Aharonov--Bohm interferometer. It offers a decisive test of "population switching", one of the leading contenders for an explanation of the phenomenon.Comment: 4 pages, 4 figure

    Compaction and folding in model proteins

    Full text link
    Protein folding is modeled as diffusion on a free-energy landscape, allowing use of the diffusion equation to study the impact of energetic parameters on the folding dynamics. The free-energy landscape is characterized by two different order parameters, one representing the degree of compactness, the other a measure of the progress towards the folded state. For marginally stable proteins, fastest folding is achieved when the nonspecific interactions favoring compaction are strong, resulting in a high folding temperature. Such proteins fold by rapid collapse followed by slower accumulation of correct contacts. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70191/2/JCPSA6-107-11-4408-1.pd

    Universal correlation between energy gap and foldability for the random energy model and lattice proteins

    Full text link
    The random energy model, originally used to analyze the physics of spin glasses, has been employed to explore what makes a protein a good folder versus a bad folder. In earlier work, the ratio of the folding temperature over the glass–transition temperature was related to a statistical measure of protein energy landscapes denoted as the foldability F. It was posited and subsequently established by simulation that good folders had larger foldabilities, on average, than bad folders. An alternative hypothesis, equally verified by protein folding simulations, was that it is the energy gap Δ between the native state and the next highest energy that distinguishes good folders from bad folders. This duality of measures has led to some controversy and confusion with little done to reconcile the two. In this paper, we revisit the random energy model to derive the statistical distributions of the various energy gaps and foldability. The resulting joint distribution allows us to explicitly demonstrate the positive correlation between foldability and energy gap. In addition, we compare the results of this analytical theory with a variety of lattice models. Our simulations indicate that both the individual distributions and the joint distribution of foldability and energy gap agree qualitatively well with the random energy model. It is argued that the universal distribution of and the positive correlation between foldability and energy gap, both in lattice proteins and the random energy model, is simply a stochastic consequence of the “thermodynamic hypothesis.” © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70084/2/JCPSA6-111-14-6599-1.pd

    Surveying determinants of protein structure designability across different energy models and amino-acid alphabets: A consensus

    Full text link
    A variety of analytical and computational models have been proposed to answer the question of why some protein structures are more “designable” (i.e., have more sequences folding into them) than others. One class of analytical and statistical-mechanical models has approached the designability problem from a thermodynamic viewpoint. These models highlighted specific structural features important for increased designability. Furthermore, designability was shown to be inherently related to thermodynamically relevant energetic measures of protein folding, such as the foldability F and energy gap Δ10.Δ10. However, many of these models have been done within a very narrow focus: Namely, pair–contact interactions and two-letter amino-acid alphabets. Recently, two-letter amino-acid alphabets for pair–contact models have been shown to contain designability artifacts which disappear for larger-letter amino-acid alphabets. In addition, a solvation model was demonstrated to give identical designability results to previous two-letter amino-acid alphabet pair–contact models. In light of these discordant results, this report synthesizes a broad consensus regarding the relationship between specific structural features, foldability F, energy gap Δ10,Δ10, and structure designability for different energy models (pair–contact vs solvation) across a wide range of amino-acid alphabets. We also propose a novel measure ZdkZdk which is shown to be well correlated to designability. Finally, we conclusively demonstrate that two-letter amino-acid alphabets for pair–contact models appear to be solvation models in disguise. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69591/2/JCPSA6-112-5-2533-1.pd
    • …
    corecore